Background Radiography for Border Inspections

Rick Chartrand Tom Asaki

for the Los Alamos National Laboratory
Background Radiography Team

K. N. Borozdin *et al.*, "Radiographic imaging with cosmic ray muons," *Nature*, **422**, 277 (2003).

W. C. Priedhorsky, et al., "Detection of high-Z objects using multiple scattering of cosmic ray muons," Review of Scientific Instruments, 74, 4294 (2003).

LA-UR-04-5766

Contraband Problem / Muon Solution

- Smugglers may try to bring across the border a variety of controlled materials (e.g. U and Pu).
- To get past radiation detectors, these items will need to be shielded, so there will also be lead or other high Z shielding material.
- A characteristic of high Z material is that charged particles will experience greater multiple scattering as they traverse them relative to lower Z material.
- So, our proposed method of detecting a threat object is to measure the multiple scattering of cosmic ray muons that pass through a cargo container or vehicle.
- Any successful threat object detection method must be automated, obtain an answer in near real time, be robust to all cargo scenarios, and have an acceptable reliability.

Muon Radiography Operational Concept

 $Muon flux \sim 1 cm^{-2}min^{-1}$

Objective: penetrating radiography with no artificial dose

Application:
Prevent illicit movement of nuclear materials

The heavier the shield, the easier the detection

Cosmic Ray Muons

- Primary cosmic rays strike the atmosphere and generate a cascade of secondary particles.
- Muons are the dominant particle at the Earth's surface.
- Most muons can penetrate tens of meters of rock or more.
- Muons arrive at a rate of 10,000 per square meter per minute (at sea level).
- The spectrum of cosmic ray muons (energy, arrival angle) is well documented. Peak at 3 GeV

Physics of interaction: multiple scattering

Scattering distribution is approximately Gaussian
$$\frac{dN}{d\theta_x} = \frac{1}{\sqrt{2\pi}\theta_0} e^{\frac{-\theta_x^2}{2\theta_0^2}}$$

and the width of the distribution depends on material and muon properties $\theta_0 = \frac{13.6}{n\beta} \sqrt{\frac{L}{\lambda}} + H.O.T.$ (λ is a radiation length)

$$\theta_0 = \frac{13.6}{p\beta} \sqrt{\frac{L}{\lambda}} + H.O.T.$$

Scattered particles carry information from which material may be identified.

Material	λ , cm	θ_0 , mrad*
Water	36	2.3
Iron	1.76	11.1
Lead	0.56	20.1
*10 cm of material, 3 Gev muons		

Radiation Lengths and Mean Square Scattering for Example Materials

Prototype Experiment

The magnitude of scattering is exaggerated for illustrative purposes.

World's First Cosmic Ray Muon Radiograph Using Trajectory Reconstruction

Momentum Estimation

Border Inspection Concept

- First, is something producing large scattering?
 - Almost all cars, trucks and containers are harmless and should be quickly assessed as "uninteresting" and passed through.
- Second, is an interesting item an actual threat?
 - If you find that there is something generating a lot of scattering, is it a big piece of steel or a smaller piece of lead or SNM?
- Third, if a threat object is suspected, where is it and what does it look like?
 - To decide what you do next, you want to get more information on object size, shape, location, etc.

Maximum Likelihood Tomographic Reconstruction 28x28x64 voxellation, 1 minute of data

U in empty container

Side View

Top View

U in distributed Fe

U and car differentials

Classification

- Instead of using the data to create an image to find an object, we sought to determine directly from the data whether a threat object is present.
- We asked the LANL machine-learning folks about classifiers; they suggested using a support-vector machine (SVM).

Support-Vector Machines

Thousands of points in 27-dimensional space

Thousands of points in infinite-dimensional space

- Linear classification is made possible by nonlinearly embedding the data into an infinite-dimensional function space.
- Given a kernel k(x, y), the embedding maps y to $x \mapsto k(x, y)$.
- For $k(x, y) = e^{-\Gamma ||x-y||^2}$, the data is mapped to a simplex; any two subsets can be separated by a hyperplane.

SVM Implementation

- The classifier is trained using muon-scattering data generated by computer simulations of cargo containers containing a variety of materials, some with a threat object and some without.
- The features for each sample are the mean squared scattering (angle times energy) for each 10-cm voxel in a 3-voxel cube surrounding the sample location.
- A muon's scattering is assigned to each voxel that the muon is estimated to have passed through (using incident track up to the assumed point of scatter, then the scattered track).
 - Alternatives: assign scattering just to the PoCA voxel; or weighted by inverse-distance from the PoCA.

Results---Test Data

Positive samples have 20-kg U sphere centered on the central voxel.

Results---Offset Test Data

Positive samples have 20-kg U sphere centered on a vertex of the central voxel.

Clustering for Locating Objects

- The SVM works well for 3-voxel cubes; what about a whole container?
- Testing too many locations will allow test errors to accumulate.
- We identify a small number of locations to test by using a clustering routine.
- The cluster centroids are considered the candidate locations for a threat object, and passed to the classifier.

Clustering algorithm

- A selection of the most significantly scattered muons is used for the clustering algorithm.
 - Scattering significance is the product of scattering angle and estimated muon energy.
 - The number of muons selected, ~ 100, can vary with the cargo weight, the duration of muon exposure, and the minimum size of threat object to be detected.
- A k-means clustering algorithm is used to find the clusters.
 - The largest cluster is iteratively checked for possible division, according to a criterion of the form $r_{p+} + r_{p-} < \gamma r_p$.
 - Stopping criteria involve the size of γ , the number of clusters, and the size of the smallest cluster.
- The cluster centroids are determined and passed to a classifier.
 - The centroid of each cluster is the point having the least total distance to each point of the cluster, as measured by a physics-based distance function.

The Distance Function

- Uses the single-scatter approximation to associate a point with each muon.
- Choice of weights incorporates the uncertainty of this approximation.
- Orthonormal coordinate vectors for each muon:
 - e₁: orthogonal to both paths
 - e₂: in direction of the deflection
 - e₃: follows tracks most closely

$$d_j(s) = \sqrt{\sum_{i=1}^3 (\alpha_{ji}(s-p_j) \cdot e_{ji})^2},$$

$$d_{jk} = d_j(p_k) + d_k(p_j).$$

Clustering Results for Case 1c-105 (Uranium Sphere with Significant Iron Background)

Preliminary Results---Classifying Cluster Locations

Number of positively-classified samples per truck

87% of trucks with a threat object have at least one positive sample (100% for common cargo scenario)

99% of trucks with no threat object have no positive sample

